Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Classical Wolf–Rayet (WR) stars are descendants of massive OB-type stars that have lost their hydrogen-rich envelopes and are in the final stages of stellar evolution, possibly exploding as Type Ib/c supernovae. It is understood that the mechanisms driving this mass loss are either strong stellar winds and or binary interactions, so intense studies of these binaries including their evolution can tell us about the importance of the two pathways in WR formation. WR 138 (HD 193077) has a period of just over 4 yr and was previously reported to be resolved through interferometry. We report on new interferometric data combined with spectroscopic radial velocities in order to provide a three-dimensional orbit of the system. The precision on our parameters tend to be about an order of magnitude better than previous spectroscopic techniques. These measurements provide masses of the stars, namely,MWR= 13.93 ± 1.49M⊙andMO= 26.28 ± 1.71M⊙. The derived orbital parallax agrees with the parallax from Gaia, namely, with a distance of 2.13 kpc. We compare the system’s orbit to models from BPASS, showing that the system likely may have been formed with little interaction but could have formed through some binary interactions either following or at the start of a red supergiant phase but with the most likely scenario occurring as the red supergiant phase starts for a ∼40M⊙star.more » « less
-
Abstract Extreme precision radial velocity (EPRV) measurements contend with internal noise (instrumental systematics) and external noise (intrinsic stellar variability) on the road to 10 cm s−1“exo-Earth” sensitivity. Both of these noise sources are well-probed using “Sun-as-a-star” RVs and cross-instrument comparisons. We built the Solar Calibrator (SoCal), an autonomous system that feeds stable, disk-integrated sunlight to the recently commissioned Keck Planet Finder (KPF) at the W. M. Keck Observatory. With SoCal, KPF acquires signal-to-noise ratio (S/N) ∼ 1200,R= 98,000 optical (445–870 nm) spectra of the Sun in 5 s exposures at unprecedented cadence for an EPRV facility using KPF’s fast readout mode (<16 s between exposures). Daily autonomous operation is achieved by defining an operations loop using state machine logic. Data affected by clouds are automatically flagged using a reliable quality control metric derived from simultaneous irradiance measurements. Comparing solar data across the growing global network of EPRV spectrographs with solar feeds will allow EPRV teams to disentangle internal and external noise sources and benchmark spectrograph performance. To facilitate this, all SoCal data products are immediately available to the public on the Keck Observatory Archive. We compared SoCal RVs to contemporaneous RVs from NEID, the only other immediately public EPRV solar data set. We find agreement at the 30–40 cm s−1level on timescales of several hours, which is comparable to the combined photon-limited precision. Data from SoCal were also used to assess a detector problem and wavelength calibration inaccuracies associated with KPF during early operations. Long-term SoCal operations will collect upwards of 1000 solar spectra per six-hour day using KPF’s fast readout mode, enabling stellar activity studies at high S/N on our nearest solar-type star.more » « less
-
Abstract We introduce the OATMEAL survey, an effort to measure the obliquities of stars with transiting brown dwarf companions. We observed a transit of the close-in (Porb= 1.74 days) brown dwarf GPX-1 b using the Keck Planet Finder spectrograph to measure the sky-projected angle between its orbital axis and the spin axis of its early F-type host star (λ). We measuredλ= 6.°9 ± 10.°0, suggesting an orbit that is prograde and well aligned with the stellar equator. Hot Jupiters around early F stars are frequently found to have highly misaligned orbits, with polar and retrograde orbits being commonplace. It has been theorized that these misalignments stem from dynamical interactions, such as von Zeipel–Kozai–Lidov cycles, and are retained over long timescales due to weak tidal dissipation in stars with radiative envelopes. By comparing GPX-1 to similar systems under the frameworks of different tidal evolution theories, we argued that the rate of tidal dissipation is too slow to have re-aligned the system. This suggests that GPX-1 may have arrived at its close-in orbit via coplanar high-eccentricity migration or migration through an aligned protoplanetary disk. Our result for GPX-1 is one of few measurements of the obliquity of a star with a transiting brown dwarf. By enlarging the number of such measurements and comparing them with hot-Jupiter systems, we will more clearly discern the differences between the mechanisms that dictate the formation and evolution of both classes of objects.more » « less
-
Abstract Hundreds of exoplanets between 1 and 1.8 times the size of Earth have been discovered on close-in orbits. However, these planets show such a diversity in densities that some appear to be made entirely of iron, while others appear to host gaseous envelopes. To test this diversity in composition, we update the masses of five rocky exoplanets (HD 93963 A b, Kepler-10 b, Kepler-100 b, Kepler-407 b, and TOI-1444 b) and present the confirmation of a new planet (TOI-1011) using 187 high-precision radial velocities from Gemini/MAROON-X and Keck/KPF. Our updated planet masses suggest compositions closer to that of Earth than previous literature values for all planets in our sample. In particular, we report that two previously identified “super-Mercuries” (Kepler-100 b and HD 93963 A b) have lower masses that suggest less iron-rich compositions. We then compare the ratio of iron to rock-building species with the abundance ratios of those elements in their host stars. These updated planet compositions do not suggest a steep relationship between planet and host star compositions, contradictory to previous results, and suggest that planets and host stars have similar abundance ratios.more » « less
-
Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
An official website of the United States government
